- 容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表。
Collection
Set接口
- TreeSet:基于红黑树实现(自平衡的排序二叉树),支持有序性操作,例如根据一个范围查找元素的操作。但是查找效率不如 HashSet,HashSet 查找的时间复杂度为 O(1),TreeSet 则为 O(logN)。
- HashSet:基于哈希表实现,支持快速查找,但不支持有序性操作。并且失去了元素的插入顺序信息,也就是说使用 Iterator 遍历 HashSet 得到的结果是不确定的。
- LinkedHashSet:具有 HashSet 的查找效率,且内部使用双向链表维护元素的插入顺序。
List接口
- ArrayList:基于动态数组实现,支持随机访问。
- Vector:和 ArrayList 类似,但它是线程安全的。
- LinkedList:基于双向链表实现,只能顺序访问,但是可以快速地在链表中间插入和删除元素。不仅如此,LinkedList 还可以用作栈、队列和双向队列。
Queue接口
- LinkedList:可以用它来实现双向队列。
- PriorityQueue:基于堆结构实现,可以用它来实现优先队列。
Map
- TreeMap:基于红黑树实现。自平衡的排序二叉树)
- HashMap:JDK1.8之前HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。JDK1.8以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。
- HashTable:数组+链表组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的。它是线程安全的,这意味着同一时刻多个线程可以同时写入 HashTable 并且不会导致数据不一致。它是遗留类,不应该去使用它。现在可以使用 ConcurrentHashMap 来支持线程安全,并且 ConcurrentHashMap 的效率会更高,因为 ConcurrentHashMap 引入了分段锁。
- LinkedHashMap:使用双向链表来维护元素的顺序,顺序为插入顺序或者最近最少使用(LRU)顺序。
List,Set,Map三者的区别
- List(对付顺序的好帮手): List接口存储一组不唯一(可以有多个元素引用相同的对象),有序的对象
- Set(注重独一无二的性质): 不允许重复的集合。不会有多个元素引用相同的对象。
- Map(用Key来搜索的专家): 使用键值对存储。Map会维护与Key有关联的值。两个Key可以引用相同的对象,但Key不能重复,典型的Key是String类型,但也可以是任何对象。
如何选用集合
主要根据集合的特点来选用,比如我们需要根据键值获取到元素值时就选用Map接口下的集合,需要排序时选择TreeMap,不需要排序时就选择HashMap,需要保证线程安全就选用ConcurrentHashMap.当我们只需要存放元素值时,就选择实现Collection接口的集合,需要保证元素唯一时选择实现Set接口的集合比如TreeSet或HashSet,不需要就选择实现List接口的比如ArrayList或LinkedList,然后再根据实现这些接口的集合的特点来选用
ArrayList
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable{}
ArrayList 的底层是数组队列,相当于动态数组。与 Java 中的数组相比,它的容量能动态增长。
它继承于 AbstractList,实现了 List, RandomAccess, Cloneable, java.io.Serializable 这些接口。
ArrayList 继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。
ArrayList 实现了RandomAccess 接口, RandomAccess 是一个标志接口,表明实现这个这个接口的 List 集合是支持快速随机访问的。在 ArrayList 中,我们即可以通过元素的序号快速获取元素对象,这就是快速随机访问。
ArrayList 实现了Cloneable 接口,即覆盖了函数 clone(),能被克隆。
ArrayList 实现java.io.Serializable 接口,这意味着ArrayList支持序列化,能通过序列化去传输。
扩容
添加元素时用size与当前数组大小比较(在一个私有的add方法中),来保证容量足够,如果不够时,需要使用 grow() 方法进行扩容,新容量的大小为 oldCapacity + (oldCapacity » 1),也就是旧容量的 1.5 倍。如果之前为空,则扩充为默认值10,如果需求空间比10大,则扩充至需求空间。
扩容操作需要调用 Arrays.copyOf() 把原数组整个复制到新数组中,这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数。
删除
需要调用 System.arraycopy() 将 index+1 后面的元素都复制到 index 位置上,该操作的时间复杂度为 O(N)
三种遍历方式
System.out.print("通过迭代器遍历:");
Iterator<Integer> it = arrayList.iterator();
while(it.hasNext()){
System.out.print(it.next() + " ");
}
System.out.println();
// 第二种:通过索引值遍历
System.out.print("通过索引值遍历:");
for(int i = 0; i < arrayList.size(); i++){
System.out.print(arrayList.get(i) + " ");
}
System.out.println();
// 第三种:for循环遍历
System.out.print("for循环遍历:");
for(Integer number : arrayList){
System.out.print(number + " ");
}
转化为数组
// toArray用法
// 第一种方式(最常用)
Integer[] integer = arrayList.toArray(new Integer[0]);
// 第二种方式(容易理解)
Integer[] integer1 = new Integer[arrayList.size()];
arrayList.toArray(integer1);
CopyOnWriteArrayList
是ArrayList的线程安全的变体
读写分离
写操作在一个复制的数组上进行,读操作还是在原始数组中进行,读写分离,互不影响。
写操作需要加锁,防止并发写入时导致写入数据丢失。
写操作结束之后需要把原始数组指向新的复制数组。
public boolean add(E e) {
synchronized (lock) {
Object[] es = getArray();
int len = es.length;
es = Arrays.copyOf(es, len + 1);
es[len] = e;
setArray(es);
return true;
}
}
public E get(int index) {
return elementAt(getArray(), index);
}
@SuppressWarnings("unchecked")
static <E> E elementAt(Object[] a, int index) {
return (E) a[index];
}
适用场景
CopyOnWriteArrayList 在写操作的同时允许读操作,大大提高了读操作的性能,因此很适合读多写少的应用场景。
但是 CopyOnWriteArrayList 有其缺陷:
内存占用:在写操作时需要复制一个新的数组,使得内存占用为原来的两倍左右;
数据不一致:读操作不能读取实时性的数据,因为部分写操作的数据还未同步到读数组中。
所以 CopyOnWriteArrayList 不适合内存敏感以及对实时性要求很高的场景。
LinkedList
基于双向链表实现,使用 Node 存储链表节点信息。
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
}
与 ArrayList 的比较
ArrayList 基于动态数组实现,LinkedList 基于双向链表实现;
ArrayList 支持随机访问,LinkedList 不支持;
LinkedList 在任意位置添加删除元素更快。
Hashmap
非线程安全
HashMap 主要用来存放键值对,它基于哈希表的Map接口实现,是常用的Java集合之一。
JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突).
JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)时,将链表转化为红黑树,以减少搜索时间。
红黑树:
红黑树就是一种平衡的二叉查找树
- 节点是红色或者黑色
- 根节点是黑色
- 每个叶子的节点都是黑色的空节点(NULL)
- 每个红色节点的两个子节点都是黑色的。
- 从任意节点到其每个叶子的所有路径都包含相同的黑色节点。
HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。
(n - 1) & hash : 因为n为2的幂,所以该式子同理 hash % n
拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可
jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。当节点小于6时又变为链表
扩容:
设 HashMap 的 table 长度为 M,需要存储的键值对数量为 N,如果哈希函数满足均匀性的要求,那么每条链表的长度大约为 N/M,因此平均查找次数的复杂度为 O(N/M)。
默认大小为16,每次键值对数量=HashMap大小*loadFactor(装载因子)时,扩大一倍。
ConcurrentHashMap
JDK1.7
ConcurrentHashMap 和 HashMap 实现上类似,最主要的差别是 ConcurrentHashMap 采用了分段锁(Segment),每个分段锁维护着几个桶(HashEntry),多个线程可以同时访问不同分段锁上的桶,从而使其并发度更高(并发度就是 Segment 的个数)。
默认的并发级别为 16,也就是说默认创建 16 个 Segment。
JDK1.8
使用了 CAS 操作来支持更高的并发度,在 CAS 操作失败时使用内置锁 synchronized。
CAS:
其包含3个参数:
V表示要更新的变量
E表示预期值
N表示新值
如果V值等于E值,则将V的值设为N。若V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。
通俗的理解就是CAS操作需要我们提供一个期望值,当期望值与当前线程的变量值相同时,说明还没线程修改该值,当前线程可以进行修改,也就是执行CAS操作,但如果期望值与当前线程不符,则说明该值已被其他线程修改,此时不执行更新操作,但可以选择重新读取该变量再尝试再次修改该变量,也可以放弃操作。
由于CAS操作属于乐观派,它总认为自己可以成功完成操作,当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败,但失败的线程并不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作,这点从图中也可以看出来。基于这样的原理,CAS操作即使没有锁,同样知道其他线程对共享资源操作影响,并执行相应的处理措施。同时从这点也可以看出,由于无锁操作中没有锁的存在,因此不可能出现死锁的情况,也就是说无锁操作天生免疫死锁。